Regulations Compliance Report

Approved Document L1A, 2013 Edition, England assessed by Stroma FSAP 2012 program, Version: 1.0.4.16 Printed on 25 March 2019 at 14:46:04

Project Information:

Assessed By: Aymon Winter (STRO014511) **Building Type:** Flat

Dwelling Details:

NEW DWELLING DESIGN STAGE

Total Floor Area: 94.24m²

Site Reference: 49-51 Beulah Hill Plot Reference: 01-19-73120 B-LG-01 PL1

Sada Unit Ref: B-1-A2

Client Details:

Name: Sada Architecture

Address:

Address:

This report covers items included within the SAP calculations.

B-LG-01, 49-51 Beulah Hill

It is not a complete report of regulations compliance.

1a TER and DER

Fuel for main heating system: Mains gas

Fuel factor: 1.00 (mains gas)

23.39 kg/m² Target Carbon Dioxide Emission Rate (TER)

Dwelling Carbon Dioxide Emission Rate (DER) 18.81 kg/m² OK

1b TFEE and DFEE

Target Fabric Energy Efficiency (TFEE) 81.6 kWh/m²

Dwelling Fabric Energy Efficiency (DFEE) 68.1 kWh/m²

OK

2 Fabric U-values

Element Average Highest External wall 0.23 (max. 0.30) 0.26 (max. 0.70) OK Party wall 0.00 (max. 0.20) OK Floor 0.13 (max. 0.25) 0.13 (max. 0.70) OK Roof 0.14 (max. 0.20) 0.14 (max. 0.35) OK **Openings** 1.40 (max. 2.00) 1.40 (max. 3.30) OK

2a Thermal bridging

Thermal bridging calculated from linear thermal transmittances for each junction

Air permeability at 50 pascals 5.00 (design value)

Maximum **OK** 10.0

4 Heating efficiency

Database: (rev 440, product index 017558): Main Heating system:

Boiler systems with radiators or underfloor heating - mains gas

Brand name: Worcester

Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi)

Efficiency 89.1 % SEDBUK2009

Minimum 88.0 % OK

Secondary heating system: None

Regulations Compliance Report

F. Culinday inculation			
5 Cylinder insulation	N. P. I		
Hot water Storage:	No cylinder		
6 Controls			
Space heating controls	Programmer, room therm	nostat and TRVs	OK
Hot water controls:	No cylinder		
	No cylinder		
Boiler interlock:	Yes		OK
7 Low energy lights			
Percentage of fixed lights with	h low-energy fittings	100.0%	
Minimum		75.0%	OK
8 Mechanical ventilation			
Continuous extract system			
Specific fan power:		0.15	
Maximum		0.7	OK
9 Summertime temperature			
Overheating risk (Thames va	lley):	Medium	OK
Based on:			
Overshading:		Average or unknown	
Windows facing: North West		16m²	
Ventilation rate:		2.00	
Blinds/curtains:			
		Closed 100% of daylight ho	urs
10 Key features			
External Walls U-value		0.13 W/m²K	
Party Walls U-value		0 W/m²K	
Photovoltaic array			

Code for Sustainable Homes Report For use with Nov 2010 addendum 2014 England

Assessor and House Details

Assessor Name: Aymon Winter Assessor Number: STR0014511

Property Address: B-LG-01

49-51 Beulah Hill

Building regulation assessment

 kg/m²/year

 TER
 23.39

 DER
 18.81

ENE 1 Assessment - Dwelling Emission Rate

Total Energy Type CO₂ Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2012 DER Worksheet		18.81	(ZC1)
TER		23.39	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		18.81	
% improvement DER/TER	19.6		

Total Energy Type CO2 Emissions for Codes Levels 6

	kg/m²/year	
DER accounting for SAP Section 16 allowances	18.81	(ZC1)
CO2 emissions from appliances, equation (L14)	16.25	(ZC2)
CO2 emissions from cooking, equation (L16)	2.25	(ZC3)
Net CO2 emissions	35.9	(ZC8)

Result:

Credits awarded for ENE 1 = 3

Code Level = 4

ENE 2 - Fabric energy Efficiency

Fabric energy Efficiency: 68.14 Credits awarded for ENE 2 = 0

ENE 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year
Standard Case CO2 emissions		41.5
Standard DER		24.1
Actual Case CO2 emissions		37.4
Actual DER		20

Reduction in CO2 emissions 9.88

Credits awarded for ENE 7 = 0

Technologies eligible to contribute to achieving the requirements of this issue must produce energy from renewable sources and meet all other ancillary requirements as defined by Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

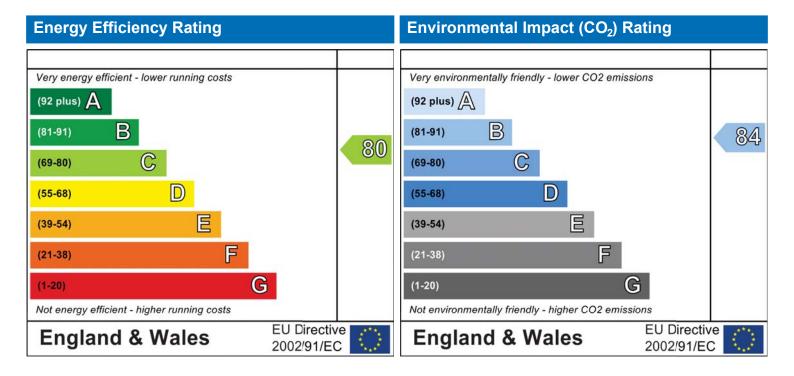
The following requirements must also be met:

- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under assessment.
- Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
- Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.
- All technologies must be accounted for by SAP.

CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.

It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

Predicted Energy Assessment


B-LG-01 49-51 Beulah Hill

Sada Unit Ref: B-1-A2

Dwelling type: Date of assessment: Produced by: Total floor area: Ground floor Flat 12 March 2019 Aymon Winter 94.24 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2012 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.

SAP Input

Property Details: 01-19-73120 B-LG-01 PL1

Address: B-LG-01, 49-51 Beulah Hill

Located in: England Region: Thames valley

UPRN:

Date of assessment: 12 March 2019 **Date of certificate:** 25 March 2019

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

Water use <= 125 litres/person/day:

New dwelling
Unknown

No related party
Calculated 120.47

True

PCDF Version: 440

Property description:

Dwelling type: Flat

Detachment:

Year Completed: 2013

Floor Location: Floor area:

Floor 0 94.24 m² Storey height: 2.87 m

27.64 .2 (6 .11 .2 .22)

Living area: 37.61 m² (fraction 0.399)

Front of dwelling faces: North East

Opening types:

Name:Source:Type:Glazing:Argon:Frame:Front DoorManufacturerSolidPVC-USide ElevSAP 2012Windowslow-E, En = 0.05, soft coatYesMetal

Name:Gap:Frame Factor: g-value:U-value:Area:No. of Openings:Front Doormm0.701.42.121Side Flay16mm or more0.80.41.4161

Orient:

Width:

Height:

Side Elev 16mm or more 0.8 0.4 1.4 16 1

Location:

Front Door Wall to Corridor North East 0 0 Side Elev External Wall North West 0 0

Overshading: Average or unknown

Type-Name:

Opaque Elements:

Name:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Kappa:
External Element	<u>s</u>						
External Wall	29.76	16	13.76	0.13	0	False	14
Wall to Corridor	18.34	2.12	16.22	0.26	0.43	False	14
Wall to Bin Store S	ervices20.69	0	20.69	0.26	0	False	14
Basement Wall	30.51	0	30.51	0.25	0	False	17
Roof to Terrace	8.38	0	8.38	0.14	0		9
Ceiling to Ramp	33.45	0	33.45	0.14	0		9
Ceiling to Binstore	32.17	0	32.17	0.14	0		9
Exposed Floor over	carpa %. 24			0.13			75
Internal Elements	<u>S</u>						
IW	154.88						9
Party Elements							
Party Wall	19.52						20
Party Ceiling	20.23						30

SAP Input

_				
Ibc	rmal	h	ridi	anci
	ша	U	IIU	ucs.

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.1031

osci acinica (inarviadar i Si	values	1 value 0.1051
Length	Psi-value		
7.81	0.3	E2	Other lintels (including other steel lintels)
1.82	0.04	E3	Sill
22.76	0.05	E4	Jamb
34.6	0.32	E20	Exposed floor (normal)
11.56	0.07	E7	Party floor between dwellings (in blocks of flats)
11.56	0.24	E24	Eaves (insulation at ceiling level - inverted)
23.04	0.28	E15	Flat roof with parapet
11.48	0.09	E16	Corner (normal)
2.87	-0.09	E17	Corner (inverted – internal area greater than external area)
2.87	0.06	E18	Party wall between dwellings
2.87	0.12	E25	Staggered party wall between dwellings c
6.8	0.16	P7	Exposed floor (normal)
6.8	0.08	P5	Roof (insulation at rafter level)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Centralised whole house extract

Number of wet rooms: Kitchen + 2

Ductwork: , rigid

Approved Installation Scheme: False

Number of chimneys: 0
Number of open flues: 0
Number of fans: 0
Number of passive stacks: 0
Number of sides sheltered: 3
Pressure test: 5

Main heating system:

Main heating system: Boiler systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Boiler Database

Database: (rev 440, product index 017558) Efficiency: Winter 86.7 % Summer: 90.0

Brand name: Worcester Model: Greenstar

Model qualifier: 34CDi Classic ErP

(Combi boiler)

Systems with radiators

Central heating pump: 2013 or later Design flow temperature: Unknown

Boiler interlock: Yes Delayed start

Main heating Control:

Main heating Control: Programmer, room thermostat and TRVs

Control code: 2106

Secondary heating system:

Secondary heating system: None

Water heating:

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder

SAP Input

Solar panel: False

Others:

Electricity tariff: Standard Tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English Wind turbine: No

Photovoltaics: Photovoltaic 1

Installed Peak power: 0.98
Tilt of collector: Horizontal
Overshading: None or very little
Collector Orientation: South

Assess Zero Carbon Home: No

User Details: **Aymon Winter** STRO014511 Assessor Name: Stroma Number: Stroma FSAP 2012 **Software Version: Software Name:** Version: 1.0.4.16 Property Address: 01-19-73120 B-LG-01 PL1 B-LG-01, 49-51 Beulah Hill Address: 1. Overall dwelling dimensions: Av. Height(m) Area(m²) Volume(m³) Ground floor 94.24 (1a) x 2.87 (2a) =270.47 (3a) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+....(1n)(4)94.24 Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+....(3n) =270.47 (5)other total main secondary m³ per hour heating heating x 40 =Number of chimneys (6a) 0 0 x 20 =Number of open flues 0 0 0 0 0 (6b) Number of intermittent fans x 10 =(7a)0 0 x 10 =Number of passive vents (7b)0 0 x 40 =Number of flueless gas fires 0 (7c)Air changes per hour Infiltration due to chimneys, flues and fans = (6a)+(6b)+(7a)+(7b)+(7c) = \div (5) = (8)If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) (9)0 Additional infiltration (10)[(9)-1]x0.1 =0 Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction (11)Λ if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12)If no draught lobby, enter 0.05, else enter 0 0 (13)Percentage of windows and doors draught stripped (14)0 Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0 (15)Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) =n (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area (17)5 If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise (18) = (16)0.25 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered (19)3 $(20) = 1 - [0.075 \times (19)] =$ Shelter factor (20)0.78 $(21) = (18) \times (20) =$ Infiltration rate incorporating shelter factor 0.19 (21)Infiltration rate modified for monthly wind speed Jan Feb Jul Sep Oct Mar Apr May Jun Aug Nov Dec Monthly average wind speed from Table 7 (22)m =4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor $(22a)m = (22)m \div 4$ 1.25

1.1

1.08

0.95

0.95

0.92

1

1.08

1.12

1.18

1.23

(22a)m

1.27

Adjusted infiltra	ation rate (allo	owing for sh	nelter an	d wind sp	eed) =	(21a) x (2	2a)m					
0.25	0.24 0.24		0.21	0.18	0.18	0.18	0.19	0.21	0.22	0.23		
Calculate effect		ge rate for t	he appli	cable case	9	-				ı	0.5	(23a)
	eat pump using A	Annendix N (2)	3b) = (23a	ı) × Fmv (eq	uation (N	J5)) otherwi	ise (23h	n) = (23a)		l I	0.5	(23a)
	heat recovery:		, ,		,	**	•	(===;		l [0.5	(23c)
	d mechanical	-	_					2h)m + (2	3h) x [ا (23c) – 1	-	(230)
(24a)m= 0	0 0		0	0	0	0	0	0	0	0	100]	(24a)
b) If balance	d mechanica	II I ventilation	without	heat reco	verv (N	II_ ЛV) (24b)n	n = (2)	11 2b)m + (2	3b)			
(24b)m= 0	0 0		0	0	0	0	0	0	0	0		(24b)
c) If whole h	ouse extract	ventilation c	r positiv	e input ve	ntilatio	n from ou	tside					
if (22b)m	n < 0.5 × (23b	o), then (24d	c) = (23b); otherwi	se (24	c) = (22b)	m + 0	.5 × (23b))			
(24c)m= 0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(24c)
	ventilation or n = 1, then (24							0.5]				
(24d)m= 0	0 0	0	0	0	0	0	0	0	0	0		(24d)
Effective air	change rate -	- enter (24a) or (24b	o) or (24c)	or (24	d) in box (25)					
(25)m= 0.5	0.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		(25)
3. Heat losses	s and heat los	ss paramete	er:									
ELEMENT	Gross area (m²)	Openin m	Ξ	Net Area A ,m ²		U-value W/m2K		A X U (W/K	()	k-value kJ/m²·ł		A X k J/K
Doors				0.40	X	1.4	□ = I	2.968	\neg			(26)
				2.12	_ ^	1.4	-	2.300	- 1			(20)
Windows				16	= '	/[1/(1.4)+ 0.	_ !	21.21	\exists			(27)
					= '		_ !			75	706	(27)
Windows	29.76	16		16	x1/	/[1/(1.4)+ 0.	.04] =	21.21		75 14	706	(27)
Windows Floor	29.76	16		16	x1/	/[1/(1.4)+ 0. 0.13	04] =	21.21 12.2512			= =	(27) 8 (28) 64 (29)
Windows Floor Walls Type1				16 94.24 13.76	x1/ x	0.13 0.13	04] =	21.21 12.2512 1.79		14	192.	(27) 8 (28) 64 (29) 08 (29)
Windows Floor Walls Type1 Walls Type2	18.34	2.12		16 94.24 13.76 16.22	x1/ x x	0.13 0.13 0.23	04] =	21.21 12.2512 1.79 3.79		14 14	192.	(27) (8) (28) (64) (29) (08) (29) (66) (29)
Windows Floor Walls Type1 Walls Type2 Walls Type3	18.34	2.12		16 94.24 13.76 16.22 20.69	x1/ x x x x	0.13 0.13 0.23 0.26	04] =	21.21 12.2512 1.79 3.79 5.38		14 14 14	192. 227. 289.	(27) (8 (28) (64 (29) (08 (29) (66 (29) (67 (29)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4	18.34 20.69 30.51	0		16 94.24 13.76 16.22 20.69 30.51	x1/ x x x x x x x x	0.13 0.13 0.23 0.26 0.25	04] =	21.21 12.2512 1.79 3.79 5.38 7.63		14 14 14 17	192. 227. 289. 518.	(27) (8 (28) (64 (29) (08 (29) (66 (29) (67 (29) (42 (30)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1	18.34 20.69 30.51 8.38	2.12 0 0		16 94.24 13.76 16.22 20.69 30.51 8.38	x1/ x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17		14 14 14 17 9	192. 227. 289. 518.	(27) (88 (28) (64 (29) (08 (29) (66 (29) (67 (29) (12 (30) (05 (30)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2	18.34 20.69 30.51 8.38 33.45 32.17	2.12 0 0 0		16 94.24 13.76 16.22 20.69 30.51 8.38 33.45	x1// x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68		14 14 14 17 9	192. 227. 289. 518. 75.4	(27) (88 (28) (64 (29) (08 (29) (66 (29) (67 (29) (12 (30) (05 (30)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3	18.34 20.69 30.51 8.38 33.45 32.17	2.12 0 0 0		16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17	x1// x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68		14 14 14 17 9	192. 227. 289. 518. 75.4	(27) (8 (28) (64 (29) (08 (29) (66 (29) (67 (29) (30) (05 (30) (31)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e	18.34 20.69 30.51 8.38 33.45 32.17	2.12 0 0 0		16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54	x1/ x1/ x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5		14 14 14 17 9 9	192. 227. 289. 518. 75.4 301. 289.	(27) (88 (28) (64 (29) (66 (29) (67 (29) (42 (30) (53 (30) (31) (4 (32)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall	18.34 20.69 30.51 8.38 33.45 32.17	2.12 0 0 0		16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52	x1/ x1/ x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5		14 14 14 17 9 9	192. 227. 289. 518. 75.4 301. 289.	(27) (88 (28) (64 (29) (66 (29) (67 (29) (12 (30) (53 (30) (31) (4 (32) (9 (32b)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall Party ceiling Internal wall ** * for windows and	18.34 20.69 30.51 8.38 33.45 32.17 Ilements, m²	2.12 0 0 0 0 0	ndow U-va	16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52 20.23 154.88	x 1/ x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5] [] [] [] [] [] [] [] [] [] [14 14 14 17 9 9 9 20 30	192. 227. 289. 518. 75.4 301. 289. 390 606	(27) (88 (28) (64 (29) (66 (29) (67 (29) (12 (30) (53 (30) (31) (4 (32) (9 (32b)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall Party ceiling Internal wall ** * for windows and ** include the area	18.34 20.69 30.51 8.38 33.45 32.17 Ilements, m²	2.12 0 0 0 0 0 0	ndow U-va	16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52 20.23 154.88	x 1/x x x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0.14	04] = = = = = =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5		14 14 14 17 9 9 9 20 30	192. 227. 289. 518. 75.4 301. 289. 390 606 1393	(27) (88 (28) (64 (29) (66 (29) (67 (29) (42 (30) (53 (30) (31) (4 (32) (.9 (32b) (.92 (32c)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall Party ceiling Internal wall ** * for windows and ** include the area Fabric heat los	18.34 20.69 30.51 8.38 33.45 32.17 Ilements, m²	2.12 0 0 0 0 0 0 see effective wind of internal walls A x U)	ndow U-va	16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52 20.23 154.88	x 1/x x x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5 0		14 14 14 17 9 9 9 20 30 9 paragraph	192. 227. 289. 518. 75.4 301. 289. 390 606 1393	(27) (88 (28) (64 (29) (66 (29) (67 (29) (12 (30) (05 (30) (31) (.4 (32) (.9 (32b) (.92 (332c)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall Party ceiling Internal wall ** * for windows and ** include the area Fabric heat los Heat capacity (18.34 20.69 30.51 8.38 33.45 32.17 Ilements, m² roof windows, us on both sides on bo	2.12 0 0 0 0 0 0 0 see effective win of internal wall A x U)	ndow U-va	16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52 20.23 154.88 alue calculate ditions	x 1/x x x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0.14	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5		14 14 14 17 9 9 9 20 30 9 paragraph	192. 227. 289. 518. 75.4 301. 289. 390 606 1393 3.2 65.38	(27) (88 (28) (64 (29) (66 (29) (67 (29) (42 (30) (53 (30) (31) (4 (32) (9 (32b) (92 (32c) (33) (34)
Windows Floor Walls Type1 Walls Type2 Walls Type3 Walls Type4 Roof Type1 Roof Type2 Roof Type3 Total area of e Party wall Party ceiling Internal wall ** * for windows and ** include the area Fabric heat los	18.34 20.69 30.51 8.38 33.45 32.17 Ilements, m² roof windows, uses on both sides eas, W/K = S (A x k parameter (T	2.12 0 0 0 0 0 0 0 see effective win of internal walls A x U) 1 MP = Cm ÷	ndow U-va ls and part	16 94.24 13.76 16.22 20.69 30.51 8.38 33.45 32.17 267.54 19.52 20.23 154.88 alue calculate ditions	x1/x x x x x x x x x x x x x x x x x x x	0.13 0.13 0.23 0.26 0.25 0.14 0.14 0.14 0 (26)(30) +	04] =	21.21 12.2512 1.79 3.79 5.38 7.63 1.17 4.68 4.5 0) + (32a).	14 14 14 17 9 9 9 20 30 9 paragraph(32e) =	192. 227. 289. 518. 75.4 301. 289. 390 606 1393	(27) (88 (28) (64 (29) (66 (29) (67 (29) (12 (30) (05 (30) (31) (.4 (32) (.9 (32b) (.92 (332c)

can be used instead of a detailed calculation Thermal bridges: S (L x Y) calculated using Appendix K (36)27.58 if details of thermal bridging are not known (36) = $0.15 \times (31)$ Total fabric heat loss (33) + (36) =(37)92.96 Ventilation heat loss calculated monthly (38)m = $0.33 \times (25)$ m x (5)Feb Jul Aug Sep Dec .lan Mar Apr May Jun Oct Nov (38)m =44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 44.63 (38)Heat transfer coefficient, W/K (39)m = (37) + (38)m 137.59 137.59 137.59 137.59 137.59 137.59 137.59 137.59 137.59 137.59 137.59 137.59 (39)Average = Sum(39)_{1...12} /12= 137.59 Heat loss parameter (HLP), W/m²K (40)m = (39)m ÷ (4)1.46 1.46 (40)m =1.46 1.46 1.46 1 46 1 46 1 46 1.46 1.46 1 46 (40)Average = Sum(40)_{1...12} /12= 1.46 Number of days in month (Table 1a) Jan Feb Mar Dec Apr May Jun Jul Aug Sep Oct Nov (41)31 28 31 30 31 30 31 31 30 31 31 (41)m =4. Water heating energy requirement: kWh/year: Assumed occupancy, N 2.68 (42)if TFA > 13.9, N = 1 + 1.76 x [1 - $\exp(-0.000349 \times (TFA - 13.9)2)] + 0.0013 \times (TFA - 13.9)$ if TFA £ 13.9, N = 1Annual average hot water usage in litres per day Vd, average = (25 x N) + 36 (43)97.84 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)(44)m =107.62 103.71 99.79 95.88 91.97 88.05 88.05 91.97 95.88 99.79 103.71 107.62 (44)Total = Sum(44)_{1 12} = 1174.04 Energy content of hot water used - calculated monthly = 4.190 x Vd,m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d) 154.56 (45)m =159.6 139.58 144.04 125.58 120.49 103.98 96.35 110.56 111.88 130.39 142.33 (45)Total = Sum(45)_{1...12} = 1539.35 If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61) 23.94 20.94 21.61 18.84 18.07 14.45 16.78 19.56 21.35 23.18 (46)15.6 Water storage loss: Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)If community heating and no tank in dwelling, enter 110 litres in (47) Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47) Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day): 0 (48)Temperature factor from Table 2b 0 (49)Energy lost from water storage, kWh/year $(48) \times (49) =$ (50)0 b) If manufacturer's declared cylinder loss factor is not known: Hot water storage loss factor from Table 2 (kWh/litre/day) 0 (51)If community heating see section 4.3 Volume factor from Table 2a (52)0 Temperature factor from Table 2b (53)0

		m water 54) in (5	storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54) (55)
•	, ,	, ,	culated f	or each	month			((56)m = (55) × (41)r	m		0		(00)
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
· · · L									7)m = (56)	m where (ix H	,
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary	/ circuit	loss (an	nual) fro	m Table	e 3							0		(58)
			culated t		•	,	• •	, ,						
` _									cylinder					(=0)
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi I	loss cal	culated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	35.86	32.37	35.8	34.58	35.68	34.47	35.58	35.64	34.53	35.75	34.66	35.84		(61)
Total he	eat requ	ired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	195.46	171.96	179.84	160.15	156.17	138.44	131.93	146.2	146.41	166.14	176.99	190.4		(62)
Solar DH	W input o	alculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no solaı	r contribut	ion to wate	er heating)		
(add ad	lditional	lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (3)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from wa	ater hea	ter											
(64)m=	195.46	171.96	179.84	160.15	156.17	138.44	131.93	146.2	146.41	166.14	176.99	190.4		_
								Outp	out from wa	ater heate	r (annual)₁	12	1960.1	(64)
Heat ga	ains fror	n water	heating,	kWh/m	onth 0.2	5 ′ [0.85	× (45)m	+ (61)m	n] + 0.8 x	((46)m	+ (57)m	+ (59)m]	
(65)m=	62.03	54.51	56.84	50.4	48.98	43.19	40.93	45.67	45.83	52.29	55.99	60.35		(65)
includ	de (57)r	n in cald	culation o	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Inte	ernal ga	ins (see	Table 5	and 5a):									
Metabo	olic gain	s (Table	5), Wat											
	Jan	Fah		ts										
(66)m=	160.77	Feb	Mar	ts Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
L ighting	100.77			Apr	<u> </u>						Nov 160.77			(66)
99		160.77	Mar	Apr 160.77	160.77	160.77	160.77	160.77	160.77					(66)
(67)m=		160.77	Mar 160.77	Apr 160.77	160.77	160.77	160.77	160.77	160.77					(66) (67)
(67)m=	g gains 55.55	160.77 (calcula 49.34	Mar 160.77 ted in Ap 40.13	Apr 160.77 opendix 30.38	160.77 L, equat	160.77 ion L9 o 19.17	160.77 r L9a), a 20.72	160.77 Iso see	160.77 Table 5	160.77 45.89	160.77	160.77		
(67)m=	g gains 55.55 ices gai	160.77 (calcula 49.34	Mar 160.77 ted in Ap 40.13	Apr 160.77 opendix 30.38	160.77 L, equat	160.77 ion L9 o 19.17	160.77 r L9a), a 20.72	160.77 Iso see	160.77 Table 5	160.77 45.89	160.77	160.77		
(67)m= Applian (68)m=	g gains 55.55 aces gai 368.16	160.77 (calcula: 49.34 ns (calc 371.98	Mar 160.77 ted in Ap 40.13 ulated in 362.35	Apr 160.77 ppendix 30.38 Append 341.86	160.77 L, equati 22.71 dix L, eq 315.98	160.77 ion L9 of 19.17 uation L 291.67	160.77 r L9a), a 20.72 13 or L1 275.43	160.77 Iso see 26.93 3a), also 271.61	160.77 Table 5 36.14 see Tal	45.89 ole 5 301.73	160.77 53.56	160.77 57.1		(67)
(67)m= Applian (68)m=	g gains 55.55 aces gai 368.16	160.77 (calcula: 49.34 ns (calc 371.98	Mar 160.77 ted in Ap 40.13 ulated in 362.35	Apr 160.77 ppendix 30.38 Append 341.86	160.77 L, equati 22.71 dix L, eq 315.98	160.77 ion L9 of 19.17 uation L 291.67	160.77 r L9a), a 20.72 13 or L1 275.43	160.77 Iso see 26.93 3a), also 271.61	160.77 Table 5 36.14 see Tal 281.23	45.89 ole 5 301.73	160.77 53.56	160.77 57.1		(67)
(67)m= [Applian (68)m= [Cooking (69)m= [g gains 55.55 aces gai 368.16 g gains 53.76	160.77 (calcular 49.34 ns (calcular 371.98 (calcular 53.76	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ted in Ap 53.76	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76	160.77 L, equati 22.71 dix L, eq 315.98 L, equat	160.77 ion L9 of 19.17 uation L 291.67 ion L15	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a)	160.77 Iso see 26.93 3a), also 271.61), also se	160.77 Table 5 36.14 see Talle 281.23	45.89 ble 5 301.73	160.77 53.56 327.6	57.1 351.91		(67) (68)
(67)m= [Applian (68)m= [Cooking (69)m= [g gains 55.55 aces gai 368.16 g gains 53.76	160.77 (calcular 49.34 ns (calcular 371.98 (calcular 53.76	Mar 160.77 ted in Ap 40.13 ulated in 362.35	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76	160.77 L, equati 22.71 dix L, eq 315.98 L, equat	160.77 ion L9 of 19.17 uation L 291.67 ion L15	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a)	160.77 Iso see 26.93 3a), also 271.61), also se	160.77 Table 5 36.14 see Talle 281.23	45.89 ble 5 301.73	160.77 53.56 327.6	57.1 351.91		(67) (68)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [g gains 55.55 aces gai 368.16 g gains 53.76 and far	160.77 (calcular 49.34 ns (calcular 371.98 (calcular 53.76 ns gains	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ted in Ap 53.76 (Table 5	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a)	160.77 L, equati 22.71 dix L, eq 315.98 L, equat 53.76	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76	160.77 Iso see 26.93 3a), also 271.61), also se 53.76	160.77 Table 5 36.14 see Tal 281.23 ee Table 53.76	45.89 ble 5 301.73 5 53.76	160.77 53.56 327.6 53.76	160.77 57.1 351.91 53.76		(67) (68) (69)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [Losses	g gains 55.55 aces gai 368.16 g gains 53.76 and far 3 e.g. ev	160.77 (calculary 49.34) ns (calculary 371.98) (calculary 53.76) ns gains 3 aporation	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ted in Ap 53.76 (Table 5	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a) 3	160.77 L, equati 22.71 dix L, eq 315.98 L, equat 53.76	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76	160.77 Iso see 26.93 3a), also 271.61), also se 53.76	160.77 Table 5 36.14 see Tal 281.23 ee Table 53.76	45.89 ble 5 301.73 5 53.76	160.77 53.56 327.6 53.76	160.77 57.1 351.91 53.76		(67) (68) (69)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [Losses	g gains 55.55 aces gai 368.16 g gains 53.76 and far 3 e.g. ev	160.77 (calcula 49.34 ns (calcula 371.98 (calcula 53.76 ns gains 3 aporatio -107.18	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ted in Ap 53.76 (Table 5 3 on (negate	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a) 3	160.77 L, equati 22.71 dix L, equati 315.98 L, equati 53.76 3 es) (Tab	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76 3 le 5)	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76	160.77 Iso see 26.93 3a), also 271.61), also se 53.76	160.77 Table 5 36.14 see Tall 281.23 ee Table 53.76	45.89 ble 5 301.73 5 53.76	160.77 53.56 327.6 53.76	160.77 57.1 351.91 53.76		(67) (68) (69) (70)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [Losses (71)m= [g gains 55.55 aces gai 368.16 g gains 53.76 and far 3 e.g. ev	160.77 (calcula 49.34 ns (calcula 371.98 (calcula 53.76 ns gains 3 aporatio -107.18	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ted in Ap 53.76 (Table 5 3 on (negate	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a) 3	160.77 L, equati 22.71 dix L, equati 315.98 L, equati 53.76 3 es) (Tab	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76 3 le 5)	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76	160.77 Iso see 26.93 3a), also 271.61), also se 53.76	160.77 Table 5 36.14 see Tall 281.23 ee Table 53.76	45.89 ble 5 301.73 5 53.76	160.77 53.56 327.6 53.76	160.77 57.1 351.91 53.76		(67) (68) (69) (70)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [Losses (71)m= [Water h	g gains 55.55 aces gai 368.16 g gains 53.76 and far 3 e.g. ev -107.18 neating 83.38	160.77 (calcular 49.34 ns (calcular 371.98 (calcular 53.76 ns gains 3 aporation -107.18 gains (T	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ited in Ap 53.76 (Table 5 3 on (negator) -107.18 Table 5) 76.4	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a) 3 tive valu -107.18	160.77 L, equati 22.71 dix L, equati 315.98 L, equati 53.76 3 es) (Tab -107.18	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76 3 le 5) -107.18	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76 3 -107.18	160.77 Iso see 26.93 3a), also 271.61), also se 53.76 3	160.77 Table 5 36.14 see Table 53.76 3 -107.18	160.77 45.89 ble 5 301.73 5 53.76 3 -107.18	160.77 53.56 327.6 53.76 3 -107.18	160.77 57.1 351.91 53.76 3 -107.18		(67) (68) (69) (70)
(67)m= [Applian (68)m= [Cooking (69)m= [Pumps (70)m= [Losses (71)m= [Water h (72)m= [Total in	g gains 55.55 aces gai 368.16 g gains 53.76 and far 3 e.g. ev -107.18 neating 83.38	160.77 (calcular 49.34 ns (calcular 371.98 (calcular 53.76 ns gains 3 aporation -107.18 gains (T	Mar 160.77 ted in Ap 40.13 ulated in 362.35 ited in Ap 53.76 (Table 5 3 on (negator) -107.18 Table 5) 76.4	Apr 160.77 ppendix 30.38 Append 341.86 ppendix 53.76 5a) 3 tive valu -107.18	160.77 L, equati 22.71 dix L, equati 315.98 L, equati 53.76 3 es) (Tab -107.18	160.77 ion L9 of 19.17 uation L 291.67 ion L15 53.76 3 le 5) -107.18	160.77 r L9a), a 20.72 13 or L1 275.43 or L15a) 53.76 3 -107.18	160.77 Iso see 26.93 3a), also 271.61), also se 53.76 3	160.77 Table 5 36.14 See Tall 281.23 See Table 53.76 3 -107.18	160.77 45.89 ble 5 301.73 5 53.76 3 -107.18	160.77 53.56 327.6 53.76 3 -107.18	160.77 57.1 351.91 53.76 3 -107.18		(67) (68) (69) (70)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access F Table 6d	actor	Area m²	l		Flu Tal	x ole 6a		Ta	g_ able 6b		Т	FF able 6c			Gains (W)	
Northwest 0.9	x 0.77	X	1	6	х	1	1.28	х		0.4)	(0.8		=	40.03	(81)
Northwest 0.9	x 0.77	х	1	6	х	2	2.97	х		0.4)	(0.8		=	81.49	(81)
Northwest 0.9	x 0.77	х	1	6	х	4	1.38	Х		0.4		(0.8		=	146.82	(81)
Northwest 0.9	x 0.77	х	1	6	х	6	7.96	х		0.4)	< [0.8		=	241.12	(81)
Northwest 0.9	x 0.77	х	1	6	х	9	1.35	х		0.4)	(0.8		=	324.11	(81)
Northwest 0.9	x 0.77	х	1	6	х	9	7.38	х		0.4)	< [0.8		=	345.54	(81)
Northwest 0.9	x 0.77	х	1	6	х	(91.1	х		0.4)	< [0.8		=	323.24	(81)
Northwest 0.9	x 0.77	х	1	6	х	7	2.63	х		0.4)	(0.8		=	257.69	(81)
Northwest 0.9	x 0.77	х	1	6	х	5	0.42	х		0.4		< [0.8		=	178.9	(81)
Northwest 0.9	x 0.77	х	1	6	х	2	8.07	х		0.4)	(0.8		=	99.59	(81)
Northwest 0.9	x 0.77	х	1	6	х	,	14.2	х		0.4)	(0.8		=	50.37	(81)
Northwest 0.9	x 0.77	Х	1	6	x	(9.21	х		0.4		(0.8		=	32.69	(81)
Color going	in watto or	alaulata.	d for ood	h month	_			/02\m	- 0	uno (7.4) uno	<u> </u>	-					_
Solar gains (83)m= 40.0		146.82	241.12	324.11	1	5.54	323.24	257		um(74)m . 178.9	99.		50.37	32.	69]	(83)
Total gains -		nd sola					, watts									J	, ,
(84)m= 657.4	_	736.04	793.7	838.99	·	6.71	784.74	727	.96	670.28	627	.83	619.64	633	.17]	(84)
7. Mean int	ternal temr	perature	(heating	r season	1)												
Temperatu	•		`		,	rea f	from Tak	ole 9	Th	1 (°C)						21	(85)
Utilisation f	•				_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	. (0)							
Jar		Mar	Apr	May	Ť	Jun	Jul	Α	ug	Sep	0	ct	Nov	D	ec]	
(86)m= 0.97		0.95	0.91	0.85	+	.74	0.62	0.6		0.83	0.9		0.96	0.9	97		(86)
Mean inter	nal temper	ature in	living ar	oo T1 (f		v sta	ns 3 to 7	7 in T	able	. 0c)						J	
(87)m= 18.4		19	19.55	20.12	_).58	20.82	20.		20.39	19.	69	18.97	18.	39]	(87)
` ′	ro during h	L	l oriodo i	n root of	du	lling	from To	hla (J	
Temperatu (88)m= 19.7		19.72	19.72	19.72	_	9.72	19.72	19.		19.72	19.	72	19.72	19.	72	1	(88)
` ′		<u> </u>		<u> </u>						10.72			10.12		-	J	(==)
Utilisation f		ı —	0.89		т —	n (se .66	e Table 0.49	r –	- 4	0.77	0		0.95	0.0		1	(89)
		0.94	<u>l</u>	0.81	_			0.5			0.		0.95	0.9	91		(09)
Mean inter		ī	1	ī	Ť			i 		1						1	(00)
(90)m= 17.4	3 17.6	17.98	18.52	19.06	19	9.47	19.64	19.	62	19.32	18.		17.95	17.	37		(90)
										II.	LA -	LIVII	ng area ÷ (4	+) –		0.4	(91)
Mean inter		ature (f	or the wh	ole dwe	lling) = fl	_A × T1	+ (1	– fL	A) × T2						1	
(92)m= 17.8		18.39	18.93	19.48		9.91	20.11	20.		19.75	19.		18.36	17.	78	J	(92)
Apply adjus	_	i	1	· ·	_						_					1	(00)
(93)m= 17.6		18.24	18.78	19.33	19	9.76	19.96	19.	93	19.6	18.	92	18.21	17.	63		(93)
8. Space h				ro obtoi:	d	at at	n 11 of	Tabl	o 0h	oo tha	4 T: .	~-/	76\m an	d ro	ماده	aulata	
Set Ti to th the utilisation					ieu	ลเ 516	5p 1101	ıabl	ວ ອນ	, รบ แล	. 11,1	11-(i ojili and	. 1 e -	udi(Julate	
Jar		Mar	Apr	May		Jun	Jul	А	ug	Sep	0	ct	Nov	D	ec]	
Utilisation f		ains, hn	<u> </u>		_												
(94)m= 0.95	0.94	0.92	0.87	0.79	0	.66	0.51	0.5	6	0.76	3.0	39	0.94	0.9	96		(94)

Lloof	ul gains, l	hmCm	\\\ - (O.	1)m v (0.	1\m									
(95)m=		653.73	677.42	694.02	664.24	546.05	403.46	409.07	508.29	557.28	580.42	604.75		(95)
. ,	thly avera						403.46	409.07	506.29	557.26	360.42	604.75		(90)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	ıal tempe	erature,	Lm , W :	=[(39)m:	x [(93)m	– (96)m]				
(97)m=				1359.38		710.59	462.5	485.4	756.24	1144.99	1528.33	1847.43		(97)
Spac	e heating	g require	ement fo	r each n	nonth, k\	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m			
(98)m=	904.58	758.56	697.44	479.06	287.36	0	0	0	0	437.25	682.5	924.56		
			-	-	-	-	-	Tota	l per year	(kWh/year) = Sum(9	8) _{15,912} =	5171.3	(98)
Spac	e heating	g require	ement in	kWh/m²	² /year								54.87	(99)
9a. En	nergy req	uiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
-	e heatin	_										_		_
	tion of spa			·		mentary	•					Ĺ	0	(201)
Fract	tion of spa	ace hea	nt from m	nain syst	em(s)			(202) = 1 -	– (201) =			Ĺ	1	(202)
Fract	tion of tot	al heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =		L	1	(204)
Effici	ency of n	nain spa	ace heat	ing syste	em 1								90	(206)
Effici	ency of s	econda	ry/suppl	ementar	y heatin	g systen	ո, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Spac	e heating	g require	ement (c	alculate	d above)								
	904.58	758.56	697.44	479.06	287.36	0	0	0	0	437.25	682.5	924.56		
(211)n	n = {[(98)	m x (20	4)] } x 1	100 ÷ (20	06)									(211)
	1005.08	842.84	774.93	532.29	319.29	0	0	0	0	485.84	758.33	1027.29		
								Tota	ıl (kWh/yea	ar) =Sum(2	211) _{15,1012}	= [5745.89	(211)
	e heating	•		• /	month									
	3)m x (20	7	· ·			1	ı	ı	1	1				
(215)m=	0	0	0	0	0	0	0	0 T-1-	0	0	0	0		7(0.45)
								rota	ıı (Kvvn/yea	ar) =Sum(2	215) _{15,1012}	= L	0	(215)
	heating		tor (oolo	ulated a	hava)									
Outpu	195.46	171.96	179.84	160.15	156.17	138.44	131.93	146.2	146.41	166.14	176.99	190.4		
Efficie	ncy of wa		ıter										86.7	(216)
(217)m=		89.37	89.3	89.15	88.81	86.7	86.7	86.7	86.7	89.07	89.3	89.42		(217)
Fuel fo	or water h	neating,	kWh/m	onth					<u> </u>					
,	n = (64)r			<u>m</u>		l	l	l						
,		n x 100 192.41) ÷ (217) 201.38		175.85	159.68	152.17	168.63	168.87	186.53	198.2	212.94		_
(219)m=	n = (64)r = 218.65			<u>m</u>	175.85	159.68	152.17		168.87 Il = Sum(2	19a) ₁₁₂ =			2214.94	(219)
(219)m=	m = (64)r = 218.65 al totals	192.41	201.38	m 179.64		159.68	152.17			19a) ₁₁₂ =	198.2 Wh/year		kWh/yea	
(219)m=	m = (64)r = 218.65 al totals e heating	192.41 fuel use	201.38 ed, main	m 179.64		159.68	152.17			19a) ₁₁₂ =			kWh/yea 5745.89	
(219)m= Annua Space Water	m = (64)r = 218.65 al totals heating	192.41 fuel use	201.38 ed, main	179.64 system	1		152.17			19a) ₁₁₂ =			kWh/yea	
Annua Space Water Electri	m = (64)r = 218.65 al totals e heating	fuel use fuel use fuel use umps, f	201.38 ed, main d ans and	system	1 keep-ho	t		Tota	I = Sum(2	19a) ₁₁₂ =			kWh/yea 5745.89	

central heating pump:		30	(230c)
boiler with a fan-assisted flue		45	(230e)
Total electricity for the above, kWh/year	sum of (230	a)(230g) =	144.29 (231)
Electricity for lighting			392.44 (232)
Electricity generated by PVs			-745.28 (233)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.48 × 0.01 =	199.96 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	13.19 × 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.48 × 0.01 =	77.08 (247)
Pumps, fans and electric keep-hot	(231)	13.19 x 0.01 =	19.03 (249)
(if off-peak tariff, list each of (230a) to (230g) se Energy for lighting	parately as applicable and app (232)	ply fuel price according to	
Additional standing charges (Table 12)			120 (251)
	one of (233) to (235) x)	13.19 × 0.01 =	0 (252)
Appendix Q items: repeat lines (253) and (254)		10.10	0 (202)
	247) + (250)(254) =		467.83 (255)
			467.83 (255)
Total energy cost (245)(2			467.83 (255) 0.42 (256)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12)			
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12)	247) + (250)(254) =		0.42 (256)
Total energy cost (245)(245	(256)] ÷ [(4) + 45.0] =		0.42 (256) 1.41 (257)
Total energy cost (245)(245	(256)] ÷ [(4) + 45.0] =	Emission factor kg CO2/kWh	0.42 (256) 1.41 (257)
Total energy cost (245)(245	(256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy		0.42 (256) 1.41 (257) 80.31 (258) Emissions
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating systems	247) + (250)(254) = (256)] + [(4) + 45.0] = ms including micro-CHP Energy kWh/year	kg CO2/kWh	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating systems	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x	kg CO2/kWh 0.216 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) SAP rating (Section 12) 12a. CO2 emissions - Individual heating system Space heating (main system 1) Space heating (secondary)	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x (215) x	kg CO2/kWh 0.216 = 0.519 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261) 0 (263)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating system Space heating (main system 1) Space heating (secondary) Water heating	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) =	kg CO2/kWh 0.216 = 0.519 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261) 0 (263) 478.43 (264)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating system Space heating (main system 1) Space heating (secondary) Water heating Space and water heating	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) =	kg CO2/kWh 0.216 = 0.519 = 0.216 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261) 0 (263) 478.43 (264) 1719.54 (265)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating system Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hote	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) = (231) x	kg CO2/kWh 0.216 = 0.519 = 0.216 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261) 0 (263) 478.43 (264) 1719.54 (265) 74.89 (267)
Total energy cost 11a. SAP rating - individual heating systems Energy cost deflator (Table 12) Energy cost factor (ECF) [(255) x SAP rating (Section 12) 12a. CO2 emissions - Individual heating system Space heating (main system 1) Space heating (secondary) Water heating Space and water heating Electricity for pumps, fans and electric keep-hote Electricity for lighting Energy saving/generation technologies	247) + (250)(254) = (256)] ÷ [(4) + 45.0] = ms including micro-CHP Energy kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (264) = (231) x (232) x	kg CO2/kWh 0.216 = 0.519 = 0.519 = 0.519 =	0.42 (256) 1.41 (257) 80.31 (258) Emissions kg CO2/year 1241.11 (261) 0 (263) 478.43 (264) 1719.54 (265) 74.89 (267) 203.68 (268)

El rating (section 14)

13a. Primary Energy			
	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.22 =	7009.99 (261)
Space heating (secondary)	(215) x	3.07	0 (263)
Energy for water heating	(219) x	1.22 =	2702.23 (264)
Space and water heating	(261) + (262) + (263) + (264) =		9712.22 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	3.07	442.98 (267)
Electricity for lighting	(232) x	0 =	1204.8 (268)
Energy saving/generation technologies Item 1		3.07	-2288.02 (269)
'Total Primary Energy	sum	of (265)(271) =	9071.98 (272)
Primary energy kWh/m²/year	(272	·) ÷ (4) =	96.26 (273)

SAP 2012 Overheating Assessment

Calculated by Stroma FSAP 2012 program, produced and printed on 25 March 2019

Property Details: 01-19-73120 B-LG-01 PL1

Dwelling type:FlatLocated in:EnglandRegion:Thames valley

Cross ventilation possible: No Number of storeys: 1

Front of dwelling faces: North East

Overshading: Average or unknown

Overhangs: None

Thermal mass parameter: Calculated 120.47

Night ventilation: False

Blinds, curtains, shutters:

Ventilation rate during hot weather (ach): 2 (Windows open half the time)

Overheating Details:

Summer ventilation heat loss coefficient: 178.51 (P1)

Transmission heat loss coefficient: 93

Summer heat loss coefficient: 271,47 (P2)

Overhangs:

Orientation: Ratio: Z_overhangs:

North West (Side Elev) 0 1

Solar shading:

Orientation: Z blinds: Solar access: Overhangs: Z summer:

North West (Side Elev) 1 0.9 1 0.9 (P8)

Solar gains:

Orientation Area Flux FF **Shading** Gains g_ 98.85 0.4 0.9 409.93 North West (Side Elev) 0.9 x 16 0.8 **Total** 409.93 (P3/P4)

Internal gains:

	June	July	August
Internal gains	478.17	458.5	467.27
Total summer gains	920.71	868.43	802.64 (P5)
Summer gain/loss ratio	3.39	3.2	2.96 (P6)
Mean summer external temperature (Thames valley)	16	17.9	17.8
Thermal mass temperature increment	1.16	1.16	1.16
Threshold temperature	20.55	22.26	21.91 (P7)
Likelihood of high internal temperature	Slight	Medium	Slight

Assessment of likelihood of high internal temperature: Medium